If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10p^2+8p=8
We move all terms to the left:
10p^2+8p-(8)=0
a = 10; b = 8; c = -8;
Δ = b2-4ac
Δ = 82-4·10·(-8)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{6}}{2*10}=\frac{-8-8\sqrt{6}}{20} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{6}}{2*10}=\frac{-8+8\sqrt{6}}{20} $
| 11+8n=6(3n-7)-7 | | 3x+x/2+12=20 | | 854=d+498 | | 18a-15=24 | | 19=3-4n | | 3(x+4)=2x–7 | | O.25(x-13)=7 | | d+346=973 | | 2x+12=9x+9 | | (7x-5)+(10x-2)=180 | | 2c+30-4=5-4 | | 4u−10=50 | | 6p-6=-6(1-6p) | | 6x+3x-2x+5x+7x=57 | | -2x+-1=-11 | | -122=7x-4(8x-7) | | 67=b+3 | | 2x-12-9x=9 | | 49=9+5u | | 2c+30-4=6-4 | | (n-15)*(-5)=-95 | | -2+-4x=18 | | 9/4x-5/4x+1/4x=10 | | 37t=34151 | | 2c+30-4=9-4 | | 3.7t=34151 | | -122=7x-4(8x-7 | | 2c+30-4=8-4 | | (n-15)*(-6)=150 | | F(x)10x^2+F(x)=F(x)7x | | 3x+2+5x=8(x-1) | | k-10=22 |